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A b s t r a c t  

Fresnel's theory of the evanescent wave in total reflection entails that the propagation 
vector k and the momentum quanta hk have an imaginary component and, thus, a 
projection on the reflecting plane that is larger (in units such that c = 1) than the angular 
frequency ~o and the energy quanta ho). We discuss the 'tachyon properties' of these 
energy-momentum quanta and propose an experimental test using absorption or stimu- 
lated emission by an atomic or ionic beam. We then show that the Maxwell-Minkowski 
tensor (although certainly appropriate to discuss the macroscopic energy-momentum 
exchange between wave and diopter) does not describe adequately the energy-momentum 
density of the quanta in the evanescent wave, this stemming from its too remote con- 
nection with the generator 0~ of space-time displacements. On the other hand de Broglie's 
energy-momentum tensor Ak[O ~] B Jk is the density canonically associated with the gener- 
ator of space-time displacements; we show that it describes quite satisfactorily both the 
energy fluxes (as measured through the longitudinal Goos-H~nchen and our new trans- 
verse shifts of the reflected beam in total reflection) and the momentum densities of the 
quanta inside the evanescent wave. Finally, we show that it is the gauge which is transverse 
in the diopter's rest frame that directly yields the physically measured energy fluxes. We 
take this fact as a new argument, strongly supported by experimental evidence, in favour 
of the physical reality of electromagnetic potentials. 

1. I n t r oduc t i on  

O u r  in te res t  fo r  the  e n e r g y - m o m e n t u m  q u a n t a  ins ide  F resne l ' s  evanescen t  
w a v e  was  p r o m p t e d  by  o u r  p r e v i o u s  s tudies  (de Beau rega rd ,  1965; I m b e r t  
& R i c a r d ,  1968, 1970; I m b e r t ,  1968; R i c a r d ,  1970) c o n c e r n i n g  the  t rans-  
verse  shi f t  in  t o t a l  re f lec t ion  o f  a c i r cu la r ly  p o l a r i z e d  l igh t  beam.  T h e  
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driving idea for undertaking these studies was that, under appropriate 
circumstances, the velocity and momentum of spinning particles are non- 
collinear, an idea which de Beauregard (1942) and Weyssenhof (1947) 
had related to asymmetry of the energy-momentum tensor of spinning 
media, and which had earlier been proposed in other contexts (Frenkel, 
1926; Mathisson, 1931, 1933, 1937; Proca, 1933). 

Recent experiments by one of us (Imbert, 1969, 1970a, b) have provided 
an excellent verification of the formula Imbert (1968) had derived, as a 
specification of the general theory (de Beauregard, !965) for the case of 
total reflection. The new transverse shift was calculated by expressing 
conservation of the energy flux as represented by the Poynting vector, 
following a procedure analogous to Kristoffel's (1956) and Renard's (1964) 
derivation of the longitudinal Goos-H~nchen shift (Goos & HSnchen, 
1947). As the Poynting vector is part of the Maxwell-Minkowski energy- 
momentum tensor, and this tensor is essentially symmetric in the vacuum 
of the evanescent wave of total reflection, it may seem at first sight that in 
our recent publications we have departed from our original philosophy 
(de Beauregard, 1942, 1943). Our answer is that we have constantly kept 
in mind that in total reflection of a plane (elliptically polarized) wave the 
component hk z of the photon's momentum orthogonal to the incidence 
plane is identically zero (as all the field magnitudes are z independent); 
thus, while the M 4~ (~ = 1, 2, 3) components of the Maxwell-Minkowski 
tensor give the values of the energy fluxes which have been measured via 
the longitudinal and transverse shifts of the reflected beam, the M z4 = M 4z 

component does not give the right momentum density, which should be 
zero in all circumstances. Thus an appropriate energy-momentum tensor 
for describing the properties of quanta inside the evanescent wave in vacuo 
must  be asymmetrical--and thus the Maxwell-Minkowski tensor is not 
appropriate in this respect. 

At this point we decided to investigate the whole picture of energy- 
momentum quanta inside the evanescent wave, and we noticed immediately 
that, following Fresnel's well-known theory, the k s component of the 
propagation vector k normal to the reflecting plane is imaginary, while the 
k ~ component parallel to both the reflecting and the incidence planes is 
(in units such that e = 1) larger than the angular frequency w. Speaking in 
terms of energy-momentum quanta, and using units such that c = 1, this 
amounts to saying that the imaginary character of one of the components 
of their momentum entails 'tactwon properties' (de Beauregard, 1970) for 
the light quanta inside the evanescent wave--very much like what their 
alleged imaginary proper mass does for tachyons proper.t 

Section 2 of this paper is devoted to a discussion of the tachyon pro- 
perties of the photons inside the evanescent wave, and to possible means 

] G. Feinberg [Physical Review, 159, 1089 (1967)] has baptized these hypothetical 
particles proposed by various authors,the first of which may well have been J. P. Terletsky 
[Journal de Physique et le radium, 21, 681 (1960)] and S. Tanaka [Progress of  Theoretical 
Physics, 24, 171 (1960)]. 
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of  measuring the ratio kx/co > 1 in first-order absorptions or stimulated 
emissions. 

Here again the Maxwell-Minkowski tensor turns out to be faulty, as 
the ratio iMX4/M 44 (in the metric x, y, z, it) is constant in the evanescent 
wave with the value iMX4/M 44 = co/k x < 1, that is, exactly the inverse of 
the value kx/oo > 1 expected from the consideration of the tachyon photons. 
The reason for this defect is, just as before, that the Maxwell-Minkowski 
(i = 1, 2, 3, 4) tensor is not directly related to the generator Oz of  space-time 
translations. 

Now, there is an energy momentum tensor which is asymmetric in the 
vacuum and which is directly related to the generator ~t of space-time 
displacements: de Broglie'st canonical energy-momentum tensor for the 
photon field TiJ-Az;[a~]B JK [with, as usual, [a~]=a ~ - a ~ BJK-O~A K - - - r  -v-  ' ~ - -  

aKA J, OtA ~= 0]. By its very definition, this tensor yields here the correct 
values T ~4 = 0 and iTX4/T 44 = kX/co > 1. Of course, there remains to be 
seen if it also yields the correct values T 4~ = M 4x and T *z = M 4~ that have 
been measured by means of the longitudinal Goos-H/inchen and the new 
transverse displacements. The answer is yes (Irnbert & Ricard, 1968; 
Ricard, 1970)--provided one uses the gauge that is transverse in the rest 
frame of the refracting medium. So (modulo the latter condition) everything 
is settled concerning both the energy flux and the momentum density if  
one takes the asymmetric de Broglie tensor to be the energy-momentum 
density of the photons inside the evanescent wave of total reflection. 

Then, of course, one must ask what happens with the other gauges. 
The answer is that, contrary to what occurs with ordinary plane waves, the 
de Broglie tensor is not gauge invariant in Fresnel's evanescent wave, and 
that, things being so, the experimental values of the energy fluxes iT  4~ 
and iT  4~ (as measured through the longitudinal and transverse shifts of the 
reflected beam) unequivocally select the (locally) transverse gauge as the 
good one. This argument belongs to the same family as de Broglie's (1947, 
1950) one pertaining to potential energy and the mass defect (Brillouin, 
1964), but it seems to us to be much more compulsory. It is in some sense 
symmetrical to the Aharonov-Bohm (Aharonov & Bohm, 1959) type of 
argument (Ehrenberg & Siday, 1949) [also supported by experimental 
verifications (Chambers, 1960; Boersch, 1962)],, as it fixes the gauge in 
a situation where fields are strongly present, while the Aharonov-Bohm 
one shows an influence of the potentials in a region where no field is present, 
but without fixing the gauge. 

t de Broglie, L. (1949). Mdcanique Ondulatoire du Photon et Thdor& Quantique des 
Champs, p. 43. Gauthier-Villars, Paris. From the Lagrangian L-~At[Oj]BJ*+ �89 t J, 
one deduces the field equations B t j  = ~ i A j  - O jA l ,  O j B  21 = 0 and the expression of the 
canonical energy momentum tensor A,(O z) B Jk. 

++ See also, Jaklevic, R. G., Lambe, J. J., Silver, A. M. and Mercereau, J. E. (1964). 
Physical Review Letters, 12, 274. In this experiment in solid state physics the spatial 
domains where the magnetic field and the electric current are non-zero are completely 
distinct. 
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We discuss in Sections 3 and 4 the properties of  the Maxwell-Minkoswki 
and the de Broglie energy-momentum tensors inside Fresnel's evanescent 
wave. 

2. Tachyon Photons 

We shall use for simplicity units such that c = 1 and h = 1. 
A plane monochromatic  wave of angular frequency oJ travelling through 

a medium of index n with a propagation vector ks, ks = noJ > ~o of  com- 
ponents k~ x = n~oJ > oJ, k~ ~ = nfloJ > 0, k~ z = 0 (Fig. 1), and undergoing 
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Figure 1.--Ionic beam undergoing transitions with tachyon-photons inside Fresnel's 
evanescent wave. 

total reflection on vacuum on a plane y = 0, generates an evanescent wave 
obeying the same formulas as an ordinary plane wave but with a complex 
propagation vector k of  components 

kX=ks~=n~o>oJ, k r = - j ( n 2 o c  z - 1)1/2o9, k z = 0 .  

Thus the momentum quanta k associated with the energy quanta oJ in 
the wave are complex, with an x component  larger than oJ and an 
imaginary y component.  As appropriate experiments have displayed 
the absorption of the energy quanta co in the evanescent wave, there 
is no reason why the absorption of the momentum quanta k ~ (which 
enter the phase in exactly the same fashion, and are connected with o~ 
in a Lorentz transformation) should not be detectable also. I t  is then clear 
that, in simultaneous absorption (or stimulated emission) of  the energy 
and momentum quanta oJ and k x, the photons of  the evanescent wave will 
display a tachyon-like property, their imaginary momentum component  
k y entailing consequences similar (de Beauregard, 1970) to those of  the 
(hypothetic) imaginary proper mass of  tachyons proper . t  

Now we must examine how the imaginary momentum quantum k y will 
behave in absorption or stimulated emission. Suppose (Fig. 1) that a beam 

t See footnote t on page 127. 



ENERGY-MOMENTUM QUANTA IN FRESNEL'S EVANESCENT WAVE 129 

of  particles travels in vacuo parallel, and very close to, the plane interface 
y = 0, and that it is expressed in the form of a Fourier expansion 

~b --- exp [j(Ot - K x x)] f exp(jK y y) ~(K r) dK ~ (2.1) 

where [~[ ~_0 except for K r _ 0 .  
The contribution of the imaginary part of the photon's phase can also 

be Fourier expanded, so that the Fresnel evanescent wave assumes the 
expression 

A = exp[fio(t - n**x)] f exp[(jk0r y)B(ko r) dko r] (2.2) 

But, as the energy-momentum relation 

oJ 2 --- (/cO 2 + (kO 2 (2.3) 

must be satisfied and the values of oJ and k ~ > oJ are imposed, no real 
value/Co y will satisfy (2.3). Thus only the whole phase coherent Fourier 
integral (2.2) can be absorbed or emitted; that is, in the Feynman-style 

f l  
r 
I 

" , _ /  .LL___ 7 K '  . . . .  

Figure 2.--Free electrons undergoing a first-order photoelectric effect with tachyon- 
photons inside Fresnel's evanescent wave. 

formulas for the transition amplitudes, the imaginary k y should be inserted. 
Finally, the y expression of  the transition amplitude will simply be the 
product of the two amplitudes r and A(y) ---A0exp[-(nZe 2 - 1)l/Z~oy], 
so that if the ~b beam is, say, a Gaussian distribution centered on Y0 and 
very narrow with respect to the penetration depth l/(nZe 2 - 1)1/2m of  the 
evanescent wave, it will simply feel a plane tachyon wave with k x = new > o~ 
and amplitude A(yo). 

Such circumstances should allow remarkable experiments, the prototype 
of  which would be a first-order photoelectric effect on free electrons. This 
would occur (Fig. 2) if 

dK:'/dg-2 = ne (Z4) 
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that  is, according to the formula 

Q 2  - -  (KX)2 = m 2 (2 .5)  

where m denotes the electron's rest mass, if 

no, K : ' =  Q - E  + m (2.6) 

where E denotes the kinetic energy, or 

E =  {l/x/(1 - 1/n2o~ 2) - 1}m (2.7) 

However, this very striking experiment would be an exceedingly difficult 
one, because it is impossible to have both large energy quanta oJ and a 
large penetration depth 1/(n 2 ~2 _ 1 ) 1/2 w of  the evanescent wave. But, very 
fortunately, other possibilities exist. 

~n 

. . . . . . . .  Ill 

\ 
Figure 3 . - - Impar t ing  to the non-excited (resp., excited) ions the right m o m e n t u m  
hKr (resp., hKr.), the absorpt ion (resp., emission) transition with tachyon-photons  is 

rendered possible: oJ = QE -- s < oJz -- ~or. 

By choosing the photon wave in, say, the centimetric Hertzian range, 
we can obtain a deep penetration of the evanescent wave, and nevertheless 
detect the energy quanta co by absorbing them in a first-order transition 
~2r -+ DE. Denoting oJF and oJE the rest masses of  the states F and E, the 
transition will be possible only (Fig. 3) if  we give the particles exactly the 
right velocity fir such that the vector u~(i = 1, 4; x 4 = i t )  of components 
u x = neco, u 4 = ko, joins a point on the hyperbola 

g2r 2 - Kv 2 = toe z (2.8a) 

to a point on the hyperbola 

g2E 2 - KB 2 = oJE 2 (2.8b) 

This will display the simultaneous absorption of  the energy and the (real) 
momentum quanta of  the tachyon-photons. 
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The corresponding velocity f r  (or equivalently the Be corresponding to 
stimulated emission) is easily calculated from (2.81) and (2.8b) 

KF = f J2F ,  K~ = / 3 ~ e  (2.9) 
and 

& - /SF = 0,, Ke - Kr = nee0, (2.10) 

Solving these equations amounts to calculate the coordinates of the 
intersection points of the hyperbola (E) [resp. (F)] with the hyperbola 
(F) [resp. (E)] translated by u*(resp. -ui). Two of the four intersection 
points are at infinity, the other two corresponding to the equation for f r  
(or a similar one for fie) 

{(2nee0,rw)2 + 112}/3r 2 -  8nee0,rz0,sfr + {(20,r 0,) 2 -  I I 2} = 0 (2.11) 
with 

l i -  10,~ 2 - 0,r a § ( n=ee= - 1)o,=1 (2.12) 

The small root (in absolute value) is 

f~ = 4nee0,r = 0,2 _ [] {[ [2 § 4(n 2 ee2 _ 1) 0,r = 0,2}1/2 
(2nee0,r 0,)z + ] [2 (2.13a) 

(the corresponding expression for fE being obtained by the substitution 
F --> E which leaves ]] invariant). 

In fact, ~-0,~ - 0,r and 0, being much smaller than *or, an approximate 
expression for (2.12) is 20,rE and for (2.131) (the distinction between fir 
and fE being thus lost) 

n~0,= _ ~[~2 + (n2 ee2 _ 1) o,211/2 
E r e  n 2 ee2 0,2 + e= (2.13b) 

Defining Ae _~ e - 0,, AE < E, 0,, after an easy calculation, we obtain 

AE 
- nee/3 (2.13c) 

E 

that is, the formula of a generalised Doppler shift with nee > 1 (for n~ < 1, 
the formula would be that of the ordinary Doppler shift of the refracted 
wave). Thus the x component of the evanescent wave's group velocity is 
nee > 1--again a tachyon property. For the transition to be detectable it is 
necessary that ~7 is much larger than the line breadths of both frequencies 
0, and E; as in fact n~ is not very different from 1, let us say that we should 
have ~/e ___ �89 10 -3 or/317 ~ { 10 -3. The kinetic energy corresponding to that 
velocity and a molecular mass M ~  18.1840.5.10 s eV= 1, 6.101~ eV is 
Mr2~2 " 2.000 eV, a value easily attained with an N~sH3 ionic beam. 

The 'tachyon' character of the absorbed (or emitted) photons is, of 
course, expressed by the space-like character of the vector (nc~0,, i0,) (Fig. 4). 
Thus, in the reference frame of velocity /30 = 1~nee with respect to the 
medium, the tachyon photons have no energy, but only a momentum; and, 
in reference frames of velocity 1~nee < ]3 < 1, they have a 'negative energy'; 
that is, emission and absorption processes are exchanged, and (due to its 
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Figure 4.--In reference frames of velocity /3 x smaller than, equal to, or larger than 
flo = - 1/n% the tachyon-photons have positive, zero or negative energy. Emission and 

absorption processes are exchanged correspondingly. 

very high velocity) the fundamental ionic level has a (total) energy larger  
than the excited one. 

Finally (and although we do not consider it important) we come back to 
the question of the group velocity of  our tachyon photons. We consider the 
following variations of  formula (2.3): 

3k y = 0, 093o~ = k x 3k ~ (2.14a) 

3k x = 0, oJ3o) = k y 3k y (2.14b) 

whence, according to Rayleigh's well-known formula for the group 
velocity v, 

v ~ = k~/o~,  v ,  = k , /~o  ( 2 . 1 5 )  

With k x and k y real, that is, for ordinary plane wave packets, these are the 
well-known de Broglie formulas. With k y imaginary and kX> 0, we find 
v y imaginary and v x > 1 - -a  typically ' tachyonic'  property. But of  course, 
neither with tachyons proper (if they happen to exist) nor  with these 
tachyon-photons (which should exist), is there ground to believe that a 
s igna l  velocity could be greater than one. 

3. M a x w e l l - M i n k o w s k i  Tensor  

Apar t  f rom a common multiplicating factor 

P - e x p [ f l o ( t  - n ~ x )  - (n z ~2 _ 1 ) 1 / 2  coy] (3.1) 

expressing their space-time dependence and containing the complex pro- 
pagation vector k of  components 

kX=no:o) ,  k Y = - j ( n 2 o ?  - 1)1/2 ~o, k z = 0  (3.2) 
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the components of the electromagnetic field inside Fresnel's evanescent 
wave are 

'Electr ic  wave'  contribution: 

E ~ - E  ~, H x = - j ( n  2 o~ 2 - 1 ) l /2E z, H y = - n o t E  ~ (3.3) 

' M a g n e t i c  wave'  contribution: 

H ~ - H  ~, E x =j(n2 ~ 2 - 1)I/2 H ~, E r = nc~H ~ (3.4) 

One of course easily verifies that both contributions separately satisfy 
Maxwell's equations for the vacuum; in fact, the equations in (3.3) and 
(3.4) are, with reference to (3.1), and after division byjco, four of the eight 
Maxwell equations. Thus the most general evanescent wave depends on 
the three parameters n~, E ~ and H ~ (the latter two being complex). 

The components of the Maxwell-Minkoswki energy-momentum tensor 
M ~J inside the evanescent wave are, in the metric x,  y ,  z, it (Ricard, 1970) 

M 44 = w = i P * p ( E * E +  H ' H )  

M ~  = �88 p ( E  *~ E ~ + H *~ Hg + c.c.) - M 44 3 ~/3 (3.5) 

M ~4 = M 4~ = - i S  ~ = 4 P * P ( E  * ~'H ~ - E *~ H e + c.c) 

We obtain in the present case 

M,j  = �89 2 ~2 _ 1)1/2 coy] • 

0 _ ( n  2 ~2 _ 1)1/2 m - - i n e M  

0 0 0 
0 (1 -- n 2 ~2) M _in~(n20~2 _ 1)1/2N (3.6) 
0 -- ing(n 2 o~ 2 -- 1) 1/2 N n z O~ 2 M 

M = - E * Z E  z + H * Z H  ~ (3.7) 

N - j ( H  *~ E ~ -- H Z E * O  (3.8) 

At this point let us recall that the components of the energy flux 
S ~ -  i M  4~ (~ = 1, 2, 3) have been experimentally tested, i M  4x and i M  4~ 

yielding, respectively, the correct predictions (Imbert, 1968; Ricard, 1970) 
for the longitudinal Goos-H/inchen (Goos & Hgnchen, 1947) displacement 
and the new transverse displacement of the reflected beam in total reflection 
(Imbert, 1969, 1970a, b). In this respect the Maxwell-Minkowski tensor 
is thus quite satisfactory. 

In an other respect, however, it is very unsatisfactory, as the expressions 
i M  ~4 it gives for the momentum density are not compatible with those of 
the momentum quanta discussed in Section 2. First, i M  z4 is non-zero in 
general and the integral 

0 

i f M Z 4 d y  
--oo 
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is accordingly non-zero, while the z component of the momentum quanta 
is identically zero. Second, iMX4/M 44 has the constant value 1/no~< 1, 
while the ratio kX/a~ of the x component of the momentum quanta to the 
energy quanta is nc~ > 1 (tachyon photons). Thus, the (symmetric) Maxwell- 
Minkowski energy-momentum tensor cannot be considered as a density 
appropriately associated with the energy-momentum quanta carried by 
the evanescent wave. The reason for this is fairly obvious: its connection 
with the generator of space-time displacements 0, is too indirect.t 

This, of course, is not to say that the Maxwell-Minkowski tensor does 
not describe adequately the energy-momentum exchanges between wave 
and medium on the macroscopic level: it certainly does. What we are saying 
is that, due to its prequantal origin, the Maxwell-Minkowski tensor does 
not allow an appropriate discussion of what is going on at the level of 
spinning photons. In particular, it does not distinguish in the macroscopic 
momentum density what is due to the photons momentum proper and 
what is due to the so-called boost [in relation with the (a,4) components 
of the six-component angular momentum]. To this we intend to come back 
in a subsequent paper. 

For the present we will restrict ourselves to the discussion of the energy- 
momentum density canonically associated with the energy-momentum 
quanta inside Fresnel's evanescent wave. 

4. De  Broglie 's  Energy  M o m e n t u m  Tensor 

L. de Broglie~ proposes as the canonical energy-momentum tensor 
associated with the generator 0i of space-time displacements (that is, with 
the quantal energy-momentum operatorj0i), the (asymmetric) tensor 

T 'J = AK[O'] B Jk (4.1) 

(i ,j ,  k ,  l = 1, 2, 3, 4; x a = it) or, in the case of complex fields, 

T l~= ~Ak* [Y] B JK + c.c. (4.2) 

where [0 i ] - 0 f -  0 ~ is the Gordon operator and 

B i~ -  OiA J - aJA t, with 01A t = 0 (4.3) 

the electromagnetic field derived from 4-potential Aq In both cases of a 
true (U--k, leo real) or inhomogeneous (U complex) plane wave, one has 

k~ U = 0 (4.4) 
and 

jBiJ  = U AJ - kJ A ~, ki  A ~ = 0  (4.5) 

~" A. J. Janis  [American Journal o f  Physics, 38, 202 (1970)] gives a concise presenta t ion 
of  the  connect ion  between the  M ~s tensor  and  space-t ime displacements.  See also 
foo tnote  :~ on page 127. 

:~ See foo tnote  t on  page 127. 
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Then T ~ is the product of two 4-vectors 

T ' J = ~ k '  +k*~)[A~Az*U + A * J A ~ k * * - A t * A Z ( k S  +k*O] (4.6) 

one, (~), closely related with the energy-momentum and the other, (0, 
with the energy flux or (more loosely speaking) with the 4-velocity of the 
photons (de Beauregard, 1942, 1943; Weyssenhof, 1947; Weyssenhof & 
Raabe, 1947). 

For both the true or the inhomogeneous plane wave the gauge potential is 

A t = ak i exp(--jkl x t) (a is arbitrary) (4.7) 

For the true plane wave, U being real and according to formulas (4.4) 
and (4.5), the T ~J tensor is gauge invariant. But, in the inhomogeneous 
plane wave, as in general k * U # O  and A~*U#O,  the T ~J tensor will not 
be gauge invariant. To this we will come back later. Presently we will 
calculate the T~ J of our evanescent wave in the particular gauge which is 
transverse in the diopter's rest frame: 

k.A0 = 0, A o 4 - i V o  = 0 (4.8) 
so that 

E = -jwAo (4.9) 

T~J= �89 2 e2_  1)1/2 o)y] X 

1 o o (4.1o) x 0 0 
[ - inccM 0 -in~(n2o~ 2 - 1)I/ZN M'  j 

where M, N and M'  are defined by (3.7), (3.8) and 

m '  = E*Z E z + (2n 2 ~2 _ 1) H*Z H ~ (4.11) 

Comparing (3.6) and (4.10) we notice that (~ = 1,2, 3) 

T 4~ = m 4~ = m ~4 .= iS  ~' (4.12) 

thus, the energy flux is the same in the Maxwell-Minkowski tensor and in 
the de Broglie tensor TgJ; that is, the de Broglie tensor predicts just as 
correctly as the Maxwell-Minkowski tensor the longitudinal Goos- 
H/inchen (Goos & H~inchen, !947) and the recent (Imbert, 1969, 1970a, b) 
transverse displacements. 

On the other hand, by its very definition the de Broglie (asymmetric) 
tensor is perfectly compatible with the concept of the energy-momentum 
quanta of the wave. In our case, as k" = 0, T zi, and in particular T z4 = 0: 
there are neither momentum quanta nor momentum density in the z 
direction. The unsatisfactory fact that M ~4 # 0 with the Maxwell-Minkowski 
tensor is thus avoided. Similarly i T X 4 / T  44 = / ' t ~  > 1 closely corresponds to 
the 'tachyon' property of energy-momentum quanta kx/co = nc~ > 1, and 

lO 

We thus obtain 
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contrasts the ratio iMX4/M 44 = 1/no~ < 1 obtaining with Maxwell's tensor. 
We thus conclude that the asymmetric de Broglie tensor, expressed in 

the gauge which is transverse in the diopter's rest frame, is (contrary to the 
Maxwell-Minkowski tensor) completely satisfactory in both its descriptions 
of  the energy flux and of the momentum density. 

Now, as we have seen, in the case of an inhomogeneous plane wave the 
de Broglie tensor (4.6) is not gauge invariant. We must thus examine the 
gauge dependent T~ J which is then added to the preceding T~ J, the expression 
of  which is, according to (4.7), 

T~ J = {(U + k *i) (a* kz* k z Ao j - a* Ao I kz* k j exp ( - jk l  x ~) + c.c.) (4.13) 

According to (3.2), (4.9) and (3.4) 

kz* U = 2(n 2 e2 _ 1) ~o z 

A0 ~ kl* = -2n~(n 2 ~z _ 1)1/2 H ~ exp(-jkl x 1) 

so that, setting 

R-eo(a*  H ~ + all*O, S - j w ( a *  E~ - aE* 0 (4.14) 

in c~�89 = [(n 2 e2 _ 1)1/2 R, 0, (n 2 e2 _ 1)S,/n~(n 2 e2 _ 1)1/2 R] x 

x exp[-2(n2 ~ 2 -  1)x/2wy] (4.15) 
and thus 

T~j _ 1 exp[_2(nZ e2 1)i/2wy] • 1 - - ~  

• [n~x(n2~ 
L i(n2 ~2 _ 1)1/2 R 

000 not(n2 ~ zOo- 1)S inZ ~Z(n2 ~ - 1)l/2R] 

0 i(n2o~ z - 1)S -no~(n2~ z - 1)l/2R J 

(4.16) 
Thus there is in (4.16), through the definitions (4.14), an additive con- 

tribution, proportional to the arbitrary constant a, to all the terms of 
(4.10). But, as the values of the energy fluxes in the x and z directions have 
been measured through the longitudinal and transverse shifts they impart 
to the reflected beam and have been found equal to their calculated values, 
- i T  4x a n d - i T  42, we must have (Imbert, 1968, 1969, 1970a, b; Ricard, 1970) 
(discarding the limiting case of total reflection nZc~ z - 1 = O) R = S = O, 
that is, according to (4.4), 

(E*ZH ~ + E~H*Oa = 0 (4.17) 

Thus (except in the four cases where the parenthesis is zero: E z = 0, H z = 0, 
H z =  •  ~, that is, linear polarization parallel or perpendicular to the 
incidence plane, left or right circular polarization inside the evanescent 
wave), we conclude a = 0. In other words, as discrete exceptions do not 
invalidate a general conclusion, the gauge must be the transverse gauge 
in the rest frame of the medium. 



ENERGY-MOMENTUM QUANTA IN FRESNEL'S EVANESCENT WAVE !37 

5. Conclusions 

As a direct consequence of Fresnel's theory of the evanescent wave 
associated with total reflection, the light quanta in it have (in units such 
that c = 1 and h = 1) an imaginary component of their momentum in the 
direction orthogonal to the reflecting plane, and, correspondingly, a 
projection k x of their momentum on the reflecting plane that is larger than 
their angular frequency ,o. We have shown that a typical tachyon property 
should follow from this, namely, the possibility of simultaneous absorption 
(or stimulated emission) of the energy quantum ~o and the momentum 
quantum k x > o~. 

Then we have shown that the classical Maxwell-Minkowski energy- 
momentum tensor M ~j does not provide an adequate description of the 
properties of the light quanta inside the evanescent wave (which we assume 
for simplicity to be in vacuo). First, as expressed in the metric i , j , k , l =  
x ,y ,z ,  it, the (constant) ratio iMX4/M44~ SX/w of the x component of the 
Poynting vector to the energy density is 1/nc~ < 1, whereas, as said above, 
k~/~, = nc~ > 1 (n denotes the index of the medium and ~ the incidence 
angle's sine in the incident plane wave). Thus, as far as the description of 
light quanta inside the evanescent wave is at stake, the Maxwell-Minkowski 
tensor does not give the right value for the ratio of momentum density in 
the x direction to energy density. 

It does not give either the right value of the momentum density in the 
direction z orthogonal to the incidence plane. In all cases except those of 
linear polarization parallel or perpendicular to the incidence plane, 
i M  z4 =- S z is non-zero, with the same spatial dependence 

exp[_~(n 2 ~2 _ 1)~/2 oJy] 

as all other components of M ~J. Thus the integrated value S~ S~dy is 
not zero, while of course the k s component of the photons momentum 
is identically zero. So we find again an incompatibility between the concept 
of energy-momentum quanta inside the evanescent wave and the expression 
of the momentum density provided by the Maxwell-Minkowski tensor. 

However, if the components i M  x4 and i M  z4 of the momentum density 
are, as we have just said, unsatisfactory, the components i M  4x and i M  4z 
of the energy flux are quite satisfactory, as appropriate experiments have 
tested their values within the range of experimental accuracy. We are here 
referring to Kristoffel's (1956) and Renard's (1964) theory of the longi- 
tudinal Goos-H~tnchen (Goos & H~inchen, 1947) shift and to Imbert's 
(1968) theory of  the new transverse shift (Imbert, 1969, 1970a, b) of the 
reflected beam in total reflection, both of which are similar and make use 
of the energy fluxes 

dy f d z S  ~ and dy f d x S  ~ 
0 Zl 0 X1 
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Considering in particular the components (z,4) and (4,z) of the energy- 
momentum tensor, it is then clear that the only way to reconcile the Zero 
value the first one should have with the non-zero value the second one rightly 
has in general, is to use an energy-momentum tensor which is asymmetric 
(even in the vacuum). This, of course, excludes the Maxwell-Minkowski 
tensor, which is essentially symmetric in the vacuum. 

The reason why the Maxwell-Minkowski tensor is not appropriate as 
an energy-momentum density associated with photons propagating in the 
vacuum is fairly obvious: it is not canonically related to the generator 
0~ of space-time translations.t Now, there is a tensor representing the 
energy-momentum density canonically related to the operator 0~: de 
Broglie'st tensor T IJ of expression (4.2). It is, moreover, an asymmetric 
tensor (even in the vacuum), and it is such by virtue of its close relation 
not only to the energy-momentum operatorj0z, but also to the spin pro- 
perties of the photon. This brings us back to early considerations by one 
of us (de Beauregard, 1942, 1943) and by Weyssenhof (1947) on the non- 
collinearity of velocity and momentum for spinning particles and spinning 
media. Th i s  was indeed the driving idea (de Beauregard, 1965) leading to 
the recent calculations (Imbert, 1968) and experiments (Imbert, 1969, 
1970a, b) on the transverse shift by total reflection of a circularly polarized 
light beam. 

At this point it is significant to remark that (modu lo  a multiplicative 
constant) de Broglie's tensor Ak(Oi)B Jk is the on ly  second rank tensor, 
quadratic in the electromagnetic field magnitudes, and containing the 
Gordon operator [0 I] --0 ~ - 0 ~ with the index i free. Now, to say that the 
energy-momentum density associated with propagating photons should 
be described by de Broglie's tensor (4.1) or (4.2) is to confer ipso f a c t o  
some physical reality to the electromagnetic potential A t. The natural 
question is then, can we find situations where the de Broglie tensor T ~J 
is not gauge invariant a n d  where some of its components are physically 
measurable ? The answer is twice y e s  in Fresnel's evanescent wave. 

We have shown in Section 3 that, when expressed in the gauge that is 
transverse in the medium's rest frame, de Broglie's tensor yields the values 
i T  4x = i M  4x = S x and i T  4z = i M  4z = S z that have been proved experimentally 
to be the good ones (by measurements of the longitudinal and transverse 
shifts of the reflected beam). But, contrary to the Maxwell-Minkowski 
tensor, the asymmetric de Broglie tensor also yields the good value i T  z4 = 0 
and the good ratio iTx4/Z 44= kX/to = n0~> 1--this following from its 
direct relation to the generator 0~ of space-time translations. Thus, as 
expressed in the local transverse gauge, the de Broglie energy-momentum 
tensor is completely satisfactory in both respects of the (measured) energy 
fluxes and of the momentum densities. 

Then we have shown that the additional term arising in T u from the 
t A. J. Janis [American Journal o f  Physics, 38, 202 (1970)], gives a concise presentation 

of the connection between the M ~J tensor and space-time displacements. 
:~ See footnote t on page 127. 
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arbitrary gauge dependence would spoil everything, as far as the energy 
fluxes are at stake. Whence a necessary conclusion: the measured values 
of the energy fluxes iT 4~ and iT 4z unequivocally select one gauge: the one 
that is transverse in the medium's rest frame. 

This conclusion is quite similar to (but drawn from experiment in a 
much more compelling way than) an earlier conclusion by de Broglie 
(1949a) following an analysis of angular momentum in expanding spherical 
waves. Our conclusion inclines us to believe that this selection of transverse 
potentials, as being those on which the medium exerts an action, has a 
natural corollary: that longitudinal potentials could also exist but with 
an extremely weak interaction with matter. In other words, our work leads 
us to give weight to be Broglie's theory that the photon has an exceedingly 
small but non zero rest mass, and that spin-0 photons thus exist, but with 
an extremely weak interaction with matter (so that, among other things, 
the black-body radiation theory has to deal with two, and not three, spin 
states of the photon) (de Broglie, 1949b; Bass & SchrSdinger, 1955). 

We have recently taken cognizance of papers where the existence of a 
transverse energy flux inside an inhomogeneous valve wave is discussed 
(without any calculation of the corresponding external shift): 

Boguslawski, S. (1912). Physikalische Zeitschrift, 13, 393. 
Wiegrefe, A. (1914). Annalen der Physik, 44, 887. 
Fedorov, F. I. (1955). Dokla~ly Akademi i nauk SSSR,  105, 465. 

The difference between the energy fluxes and the momentum densities is 
not discussed in these papers. 

Caruiglia, C. K. and Mandel, S. (1971), Physical Review, 3D, 880, have 
treated the quantisation of electromagnetic evanescent waves. The com- 
mutation relations they obtain in the k-representation [equations (66), 
(67), (82) and (83)] are quite consistent with our 'tachyon photons'. 

Glass, S. J. and Mendlowitz, H. (1968), Physical Review, 174, 57, explain 
the Smith-Purcell experiment in terms of a first-order photoelectric effect 
occurring near a metallic grating. 
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